
AD-A28 3 921

A Practical Algorithm for Integer Sorting
on a Mesh-Connected Computer

(Preliminary Version)

Nathan Folwell Sumanta Guha * Ichiro Suzuki t

Department of Computer Science
University of Wisconsin-Milwaukee IC

P.O. Box 784 ELECTE
Milwaukee, WI 53201 ECTE_• A~dG3 01•994

May 5, 1994 S G

Abstract

This paper presents count-sort, a parallel algorithm for mesh-connected computers to
sort integers where the range of inputs is known. A straightforward counting technique
that has not been implemented previously in parallel sorting algorithms is presented. On
a mesh-connected computer with v x 1 processors we are able to sort N integers
in the range 1 ... vrTN in time cVW-N where c is very small. For practical values of N, the
algorithm is extremely fast. Further, it is possible to expand the range by a factor k to
1 ... kv1N so that the slowdown is less than k.

M-J We produce an implementation of count-sort on the SIMD MasPar MP-1 with 8192
processors that sorts 8-bit integers significantly faster than the manufacturer's current
library routine for sorting 8-bit integers.

1 Introduction

Nk'k• •The study of parallel algorithms is increasingly becoming one of the most important areas in

computer science. A very practical and interesting architecture for parallel algorithms is the

mesh. Its regular interconnection, ideal for VLSI implementation, is easily scalable.

A fundamentally important problem for the mesh-connected architecture is that of finding

efficient sorting algorithms. In fact, sorting is often a key step in other mesh algorithms.

Several practical O(,/K-) time algorithms to sort on a vW x v/7K mesh have been proposed

[4, 6, 7, 10]. In the model where there is initially one element per processor and the target

"Communicating author.
tSupported in part by the National Science Foundation under grants CCR-9004346 and IRI-9307506, and

the Office of Naval Research under grant N00014-94-1-0284.

DTIG QUALJ`Ti 'D

94, 81 29
2j

order is snake-fike row-major, Schnorr and Shamir [9] developed an algoiithm that runs

in time 3V/N + o(J/-N), which is asymptotically near optimal as a provable lower bound

is 3v-N" - o(VNW) [5, 9]. However, their algorithm is only practical for very large N. More

recently, Krizanc [3] presented the first deterministic sorting algorithm in a similar model that

overcomes the 3vN - o(vW-N") bound given that input is drawn from integers in the range

1 ... N, by using counting techniques. This is analogous to the situation in the sequential

model where, given information about the range of inputs, it is possible to sort faster than

the lower bound of Q(N log N) that holds for arbitrary inputs [2].

We present a parallel sorting algorithm, count-sort, for mesh-connected computers that

sorts N integers in the range 1 ... kV/N" faster than the above algorithms for practical values of

k and N. Count-sort is fast because it is not comparison based. Instead, a counting technique

is used to achieve high speeds. Further, it is practical, and we have, in fact, implemented

it as an extremely fast sorting routine on the MasPar MP-1: on an 8192 processor MasPar

MP-1 our routine sorts 8-bit numbers 30% faster than the current 8-bit sorting routine in

the MasPar software library. Such routines to sort "short" integers have many applications.

In section 2 we define our models of computation. In section 3 we describe count-sort and

analyze its running time. We first develop the algorithm on a simple model of computation.

Next, we modify the algorithm for a more powerful model that, in fact, better resembles

machines currently available on the market. In section 4 we present an implementation of

count-sort on the commercially available MasPar MP-I, with time comparisons between our

implementation and the MasPar library sort. Section 5 presents conclusions and possible

extensions to the algorithm.

2 Models of Computation

Here we present two models of computation for analyz:ng our algorithm. The first is a simple

model to develop the algorithm, while the second has additional capabilities.

2.1 Simple Model of computation

Assume there are N processors which are arranged in a vWN x VJ mesh. Each processorr

is connected to its four nearest neighbors. Processors on the perimeter of the mesh haveJ
wrap-around connections. We identify each processor with a unique ID of the form (i,j)

where i is the row number and j is the column number (see Figure 1). These ID numbers

can also be used to identify processors in row major order. For example, in Figure 1, the

processor with ID (2,3) is the 7th processor in row major order for a 4 x 4 mesh.

Availability Codes

t vail and i orDist Special

Each processor can perform simple programming operations and route a single value to

one of its four neighbors in constant time.

The programming operations that are performed are similar to any high level program-

ming language: the conditional if statement, the assignment statement, logical and arithmetic

operations are all assumed to execute in time to.

Define the route command to be SEND_{N,S,E,W}[var]. For example, SENDN[input]

would send input on every processor to the input register to the north. This includes the

wrap-around connections. Assume the SEND operation executes in time ts.

All operations are performed simultaneously in SIMD manner on all processors unless

specified by a conditional statement. If a conditional statement is used then the processors

where the conditional is true will perform the operation while the other processors are idle.

2.2 A More Powerful Model

It is useful to analyze our algorithm on a more powerful model that better represents machines

currently available on the market. This model has three additional capabilities.

The first capability which is available, for example, on the the MasPar MP-1, allows for

full permutation routing in constant time. Define this operation to be PERMUTE[vardest],

which routes the values in var to the processors with ID value dest. Note that dest is a

variable on each processor. This is a powerful operation. It is implemented on the MP-1

with a three stage hierarchy of crossbar switches, called the router [1, 11]. The time for this

operation is tp.

The second capability, also available on the MasPar M1-1, allows a variable to be sent in

any of the four compass directions an arbitrary number of steps in constant time provided

the intermediate processors are idle. Define this operation to be SEND[dist]{N,S,E,W}[varl.

For example, in Figure 1, SEND[3]S[input] sends the contents of input from row 1 to row 4

in constant time if processors in rows 2 and 3 are idle. The time for this operation is tSD.

The third capability is SEND-COPY, which is the same as the more powerful SEND, but

a copy of var is left in processors along its path. For example, SENDCOPY[3]S[input] still

sends input three processors to the south, but each intermediate input register gets a copy of

the original input as well. The time for this operation is tc.

These three capabilities are common not only to the MP-1. Other commercial machines

such as the MasPar MP-2, Cambridge Parallel Processing DAP, and the DEC MPP have

similar capabilities.

3

3 The Algorithm

Initially, each processor contaii input integer from the range 1 ... V. . When the algo-

rithm completes inputs are sor .ording to row-major order. More formally, the (i,j)th

processor will contain the (i + (3 - 1) * vfN)th smallest element.

The idea underlying count-sort is to use the knowledge that the input range is "small"

to replace the compare-exchange schemes of mesh sorts for arbitrary input with an efficient

scheme to count occurrences of every possible input.

Each processor has three registers, scratch, count, and output. The register scratch holds

inputs. Both count and output are initialized to 0. See Figure 2 for an example of an initial

configuration on a 4x4 mesh.

Before we proceed we need two definitionr s t - NUMBER(i) to be the number of

occurrences of each input value equal to i, and LE.ADFP(i) = Z= 1 NUMBER(J).

For example, if we have the list 2 1 3 2 1 3 1 2 2 then

NuMBER(1) = 3, NUMBER(2) = 4, and NUMBER(3) = 2,

and

LEADER(l) = 3, LEADER(2) = 7, and LEADER(3) = 9.

Notice that if the list above is sorted to 1 1 1 2 2 2 2 3 3, then LEADER(i) is the positio,: for

the last occurrence of each i.

3.1 The Simple Model

We describe the five stages of count-sort in the next five subsections, and in the sixth sub-

section we give an analysis.

3.1.1 Vertical Counting

In this first stage, processor (i,j) counts occurrences of input i in column j. To accomplish

this, use the mesh connections to fully "rotate" the the input values around each column in

vfN steps (see Figure 3):

for v/W steps do

if (scratch = x) then count = count + 1

SEN DS[scratch]

Analysis: ,/K route steps, vW comparisons, vW assignments, and 'W_ increments requir-

ing (v'W-)ts + (3vW-N)to time steps.

4

3.1.2 Calculating NUMBER(i)

At this point each processor contains a partial count of the input values. Clearly, summing

the contents of count across processors of row i will compute NuMBER(i).

This is nearly identical to the vertical counting Ftep, but we route horizontally and perform

an unconditional addition between scratch and count (see Figure 4):

scratch = count

for v"N - 1 steps do

SEN DE[scratchl

count = count + scratch

Now the contents of count in each processor of row i contains NUMBER(i).

Analysis: V/i - 1 route steps, I - 1 increments, and v'W assignments requiring (vl'N -

1)ts + (2v'N - 1)to time steps.

3.1.3 Calculating LEADER(i)

To calculate LEADER(i), we perform a prefix sum down the columns. Specifically, send the

contents of scratch vertically down the mesh performing additions between scratch and count

at each step. This produces LEADER(i) in the contents of count across processors of row i

(see Figure 5):

scratch = count

for i = 1 to (v-N - 1) do

SENDS[scratch]

if (y > i) then count = count + scratch

Analysis: V/-N- 1 route steps, vWN- I increments, v'-N- 1 comparisons, and 1W assignments

requiring (vW-N - 1)ts + (31/K - 2)to time steps.

3.1.4 Routing i to Processor LEADER(i)

At this point, we know the value of LEADER(i). Now, we shall send the value of i to the

processor with ID LEADER(i). To accomplish this we, again, use the mesh connections to

fully "rotate" the data around the mesh. The modification in this case is that we route

two values: the number i and its value LEADER(i). The output registers get the value i.

5

Notice that it is not necessary to SEND east or west due to each column containing the same

information in processors of the same row (see figure 6):

scratch = i

for vN steps do

if (count = i + (j - 1)v'N) then output = scratch

SENDS[scratch]

SEN DSS[count]

Analysis: 2v/N route steps, VNY comparisons, v7N + 1 assignments, and VW additions

requiring (2v/-N)ts + (3v/-N + 1)to time steps.

3.1.5 Filling in the Rest

The final step is to set output for processors that are between processors with ID LEADER(i).

This step completes the sorting algorithm (see Figure 7):

for vI steps do

if (j $ 1) and (output $ 0) then SENDW[output]

scratch = output

if (j = 1) and (scratch $ 0) then SENDW[scratch]

if (j = V-N) and (scratch 0 0) and (i # 1) then SENDN[scratch]

if (output = 0) and (scratch 0 0) then output = scratch

if (i j 1) then SENDN[scratch]

for V'/ steps do

if (j = v-NW) and (output = 0) then

output = scratch

SENDN[scratch]

for v/N steps do

if (j 5 1) and (output 4 0) then SENDW[output]

Analysis: 3v/-N + 3 route steps, 6V/'N + 8 comparisons, and VWN + 2 assignments requiring

(3v2-N + 3)ts + (7v'NW + 10)to time steps.

3.1.6 Final Analysis

Summing the times of the five stages we get a total of time steps for count-sort:

6

(8vN- + I)ts + (18VY + 8)to. (1)

It is possible to improve the running time. Reynolds [8] points out that a slight modifica-

tion to the routing stage of our algorithm in section 3.1.4 will yield a considerable speed-up

as follows.

We use the fact that all processors of row i contain the values of LEADER(i) in count

and i in scratch. If the processor position is less than or equal to count then we set output

to scratch, so that we can eliminate the last stage described in Section 3.1.5. The modified

fourth stage is then:

scratch = i

for v'IN steps do

if (count > i + (j - 1)vW-) then

output = scratch

SEND.S[scratch]

SENDS[count]

Analysis: 2VrN7 route steps, vWN compare steps, ,./N+ 1 assignment steps, and V1 additions

requiring (2vl-N)ts + (3v/-N + 1)to time steps.

After this modification, the algorithm is finished and the fifth stage is not needed.

This improvement reduces the running time to:

(5V-N - 2)ts + (llvW - 2)to. (2)

Compare the running time of count-sort to the running times of a few existing practical

mesh sorts for arbitrary inputs that are based on the same SIMD model:

Mesh Sort D Time Steps

Count-sort (5v-W - 2)ts + (11vN - 2)to

Kumar and Hirschberg [4] (11vW)ts + (4.5 log2 V/N-)to

Nasimi and Sahni [7] (14(v/'N- 1)- 8logvrN)ts + (6.51og 2 vV + 2.5log \/N)to

Thompson and Kung [10] (14(KN- 1)- 8logvN)ts + (21og2 V/-N+logI-N)to

Table 1: Comparing count-sort with other mesh sorts.

7

It may be seen that, for sorting in the range I ... vN, count-sort is faster for practical N. In

fact, if ts is of the same size as to then count-sodt is faster than the other sorts for meshes

containing, at least, up to 240 processors, while if ts >> to, which is usually the case with

real machines, count-sort is even faster.

3.2 Adaptation to a More Powerful model

Count-sort can be modified to run even more efficiently on our second model of computation

(see Section 2.2). We examine each stage of the above algorithm to see if we are able to take

advantage of the additional capabilities.

3.2.1 Vertical Counting

This stage remains the same.

Analysis: (v'W)ts + (3v'N)to time steps.

3.2.2 Calculating NUMBER(i)

We can improve this stage by observing, for this model, we need NUMBER(i) in only one

column, say the first. We compute a prefix sum to the first columns in ! log N steps as

follows.

We use the enhanced SEND (see Section 2.2) performing additions between processors of

distances that increases by a factor of 2 (see Figure 8) until the prefix sum is computed in

the first row.

scratch = counter

while i < v do

SEND [i]W[scratch]

counter = counter + scratch

i= 2*i

Analysis: I log N enhanced SEND steps, 1 log N additions, - log N multplications, and

(2 + log n) assignments requiring (1 log N)tSD + (ý log N + 2)to time steps.

3.2.3 Calculating LEADER(i)

This stage remains the same.

8

Analysis: (VN - l)ts + (3v1N - 2)to time steps.

3.2.4 Routing i to Processor LEADER(i)

This stage is improved by routing i in a single permute step. We know the value of LEADER(i)

for all i. This information is used to send each i to the position LEADER(i) with the command:

PERMUTE[i, LEADER(i)].

Analysis: 1 full permutation route requiring tp time steps.

3.2.5 Filling in the Rest

We can fill in the rest of the output registers with the SEND-COPY command (see Sec-

tion 2.2). This is performed in the same manner as the simple model, but here, instead of

sending variables across the mesh with 3rN SEND operations, we replace the latter with 3

SEND-COPY operations.

Analysis: 3 SEND-COPY steps, 14 comparisons, 3 assignments, and 3 SEND steps requiring
3t c + 17to + 3Us time steps.

3.2.6 Final Analysis

It follows that on the improved model, the total of time steps is:
5 1

(2VW + 2)ts + (6VN + log N + 17)to + (-log N)tSD + 3tc + tp (3)
2 2

3.3 Expanding the Range

It is possible to expand the range of integers by a factor k while not increasing the running

time by a factor k. To expand the range by a factor k we need k extra counter and scratch

registers, following which the overall algorithm remains similar. Details are omitted in this

version.

We achieve slowdown less than k by carefully choosing the elements to route and com-

parisons to make. For example, in the vertical counting stage it is possible to count k input

values per processor using no extra route steps: simply route inputs as before, but perform

k comparisons after each route step. This does not increase the number of routes, though

the number of comparisons increases by a factor k. Other stages may be sped up similarly,

and observe that the last two stages of the algorithm, in fact, need not be altered at all for

a larger range.

9

4 The Implementation

We implemented count-sort on a MasPar MP-1. The machine our algorithm was implemented

on has 8192 processors arranged in 64 rows and 128 columns. The implementation follows

closely with the modified version of the algorithm presented in Section 3.2. Even though the

mesh is not square, the algorithm is essentially the same.

The implementation was written in MasPar's Massively Parallel Language which is an ex-

tended C. It was timed against the current library function psort8u for sorting 8-bit unsigned

integers. In the table below, we give timings in number of clock ticks to sort 8-bit integers on

8192 processors. Inputs were distributed across the mesh using the pseudo-random number

generator p-random. For each range, we ran both routines 1000 times separately as the only

job on the machine and took the average.

Range Psort8u I[Count-Sort % Speed-Up

0.. .31 31262.634 21568.108 31.0
0.. .63 31263.178 21644.416 30.8
0... 127 31262.898 21727.774 30.5
0.. .191 31263.582 21779.876 30.3
0 ... 255 31262.986 21800.624 30.3

Table 2: Comparing coupt-sort with the MasPar library sort.

5 Conclusions and Future Work

We have presented a straightforward counting algorithm for sorting integers on a mesh-

connected computer with v/N x v processors, that sorts N integers in the range 1 ... k "/N

in time c.JK where c is very small. For practical values of k and N, the algorithm proves to

be very fast, both in theory and in implementation.

It is possible that this method can be expanded to sort on a larger range. One possibility

is to use count-sort as a component of a parallel sorting algorithm similar to sequential radix

sort. Further, the counting techniques themselves may be useful in applications other than

sorting.

Acknowledgements

We wish to thank the MasPar Corporation for allowing us to develop and test our imple-

mentation on one of their machines. We also would like to thank Richard Reynolds for his

helpful discussions which lead to an improvement to our algorithm.

10

References

[1] 1. Blank. The MasPar MP- I Architecture. Proc. of Compcon Spring 90, pages 20-24,

February 1990.

[2] D. E. Knuth. The Art of Computer Programming Vol. 3: Sorting and Searching.

Addison - Wesley, 1973.

[3] D. Krizanc. Integer Sorting on a Mesh-Connected Array of Processors. Information,

Processing Letters, pages 283-289, October 1993.

[4] M. Kumar and D.S. Hirschberg. An Efficient Implementation of Batcher's Odd-Even

Merge Algorithm and its Apphication in Parallel Sorting Schemes. IEEE Trans. on

Computers, pages 254-264, March 1983.

[5] M. Kunde. Lower Bounds for Sorting on a Mesh-Connected Array of Processors.

Acta Informatica, pages 121-130, April 1987.

[6] H. Lang. M. Schimmler, H. Schmeck, and H. Schr6der. Systolic Sorting on a Mesh-

Connected Network. IEEE Trans. on Computers, pages 652-658, July 1985.

[7] D. Nassimi and S. Sahni. Bitonic Sort on a Mesh-Connected Parallel Computer.

IEEE Trans. on Computers, pages 2-7, January 1979.

[8] R. Reynolds. Personal communication.

[91 C. Schnorr and A. Shamir. An Optimal Sorting Algorithm for Mesh Connected

Computers. Proc. 18th ACM Symp. on Theory and Computing, 1986.

[10] C.D. Thompson and H.T. Kung. Sorting on a Mesh Connected Parallel Computer.

Comm. of the ACM, pages 263-271, April 1977.

[11] A. Trew and G. Wilson (Eds). Past Present Parallel: A Survey of Available Com-

puting Systems. Springer - Verlag, 1991.

11

Figure 1: A 4x4 mesh with wrap-around connections.

C 2,, 2.

Figure 2 : Iialconfiguration of scratctersounterandertipa t soonting order.

1,22

Figure 4: Registers after calculating NuMBER(i).

4.. .0 4, 4.4o0

Figure 5: Registers after calculating LEADER(i).

Figure 6: Registers after routing i to processor LEADER(i).

13

Figure 7: Registers after final stage.

originl list

afte adding neagbbor

a fte adding beween evaei 41 processor

Figure 8: Logarithmic computation of N M BER(i).

14

